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The dynamics of melts of homopolymer mixtures and copolymers is studied with RPA. The first cumulant 
and the zeroth-order time moment of the measured dynamic scattering function S(q,t) are expressed-in terms 
of their counterparts in the non-interacting system of bare chains. The qualitative behaviour of these 
quantities as function of the wave number q and the interaction parameter ZF are obtained using Rouse 
dynamics for bare chains, and the results are presented graphically as a guide to the interpretation of dynamic 
scattering experiments on such systems. The q-dependent threshold for spinodal decomposition in the case of 
copolymers, and the variation of the growth rate of the mean response with q in the unstable regime are also 
discussed qualitatively in both systems. 
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I N T R O D U C T I O N  

Application of the random phase approximation (RPA) 
to the dynamics of polymers in solution and bulk is not 
new. It was used by de Gennes and his collaborators *,2 to 
explain scattering from semi-dilute polymer solutions and 
mixtures of polymers in bulk in terms of the individual 
scattering factors of the constituents and the interaction 
parameter. But the implications of RPA in the 
interpretation of dynamic scattering experiments has not 
been exploited as extensively as in the case of static 
experiments 3-8. In this paper we report some progress in 
this direction in two cases: melts of homopolymer  
mixtures and copolymer melts. 

We first remark that the structure of the mean field 
equations for the mean response of an interacting system 
in terms of the 'bare '  response function and perturbing 
potentials, is the same in static and dynamic calculations 
when the time-dependent quantities in the latter are 
Laplace-transformed. Hence, the dynamic response 
function z(q,s) can often be constructed directly from the 
expression of the static response function ;t(q) by simply 
replacing the static bare response function z°(q) by the 
dynamic bare response functions g°(q,s). As an 
illustration, consider the static structure factor San(q) of 
component  A in a melt of two interacting homopolymers 
A and B. When the incompressibility of the system is 
assumed it is known that 

1 1 1 
- - - t - - -  2ZF (1) 

~bASAA(q,ZF) ~ASO(q) dpBS°(q) 

where ~bA and ~b B are the volume fractions of the 
components with ~ b A - - I - ~ b B = l  , and ZF is the Flory 
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interaction parameter. The bare structure factors S°(q) 
j = A and B, are normalized such that S°(0) = N j, where Nj 
is the number of statistical units in the j th chain. The 
statistical units can be chosen to have the same volume 
v, = vB = 1 by changing the definition of ZF accordingly. 
Since we did not take the individual monomers  as the 
statistical units, there is no need to pay special attention 
to the case of monomers  with different volumes 9. 

The structure factor SAA(q,~F) of the interacting system, 
which is the experimentally accessible quantity, will be 
denoted henceforth by S(q,XF) or simply S(q) when no 
confusion arises, because, owing to the incompressibility, 
S(q) could as well be expressed in terms of SBa(q,zF) o r  

SgB(q,~F). This simplification in notation will also be used 
for the dynamical quantities to be introduced later. Using 
the relation 

c~S(q)=kBTz(q) (2) 

between static structure factors and response functions in 
equation (1) one finds 

1 1 1 
- ~-~7~,,- 2kBTxr (3) 

z(q) z°(q) z~q) 

By replacing the static response functions by the Laplace 
transform of their dynamic counterparts one obtains the 
desired expression for the dynamic response function 
z(q,s): 

1 1 1 
- -  ~ 2kaTzF (4) 

z(q,s) z°(q,s) z°(q,s) 

This procedure eliminates repetitious calculations in 
extending RPA to the dynamics of more complex systems, 
such as the mixtures of homopolymers in solution. 

Equation (4) can be used to express the dynamic 
structure factor S(q,~), or the intermediate scattering 
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function S(q,t), which are obtained conventionally in 
dynamic scattering experiments, in terms of the 
corresponding bare-chain counterparts and XF, as an 
extension of equation (1) to dynamics. Jannink and de 
Gennesl followed this procedure in 1967 and investigated 
numerically S(q,og) for semi-dilute polymer solutions 
using the Rouse dynamics to calculate the bare-chain 
dynamic structure factors S °(q,~o) of the constituents. The 
resulting expression of S(q,~o) in terms of S°(q,~o) and ZF is 
very complicated for qualitative discussions. 

In this paper we follow a different procedure in which 
we consider only certain dynamical quantities, such as the 
first cumulant f~(q), that are extracted routinely from the 
measured S(q,t) or S(q,og) in dynamic scattering 
experiments, and express them, rather than the full S(q,t) 
or S(q,o~), in terms of the corresponding bare-chain 
quantities, such as n0(q), and ZF' These expressions are 
obtained without resorting to particular models for the 
dynamics of bare chains. In addition to first cumulant, we 
also consider the time-integral of the normalized S(q,t) 
and the diffusion coefficient, both in the case of polymer 
blends and copolymers. 

We first consider a mixture of amorphous 
homopolymers. The case of molten copolymers will be 
discussed in the next but one section. 

MIXTURES OF HOMOPOLYMERS 

Theory 
In the framework of the linear response theory the 

Laplace transform of the dynamic scattering function 
S(q,t) is written as 

1 
S(q,s) = s + q2 D(q,s) S(q) (5) 

where S(q) is the static structure factor, and D(q,s) is a 
generalized diffusion coefficient. This equation can be 
considered as the definition of D(q,s). In polymer solution 
dynamics, the latter is expressed as 1° 

q1%_ In (q ) -  M(q,s)] (6) D(q,s) 

where Q(q) is the first cumulant and M(q,s) is the Laplace 
transform of the memory function M(q,t). 

The linear response function z(q,t) is related to S(q,t) by 

kBTz(q,t)= - ~bdSd(q't) (7) 

Elimination of the terms involving only the static 
structure factors which satisfy equation (1), results in the 
main equation of this paper: 

1 1 1 
dpAS(q)D(q,s) = dpAS°(q)O°(q,s) 4 d~BSO(q)OO(q,s ) (10) 

In order to display the dependence of D(q,s) on ZF 
explicitly, we rewrite this equation as 

D 
. . . . .  ~ ( q ) - z ~  
(q,s)=t;otq,s) - ~  (11) 

by introducing 

,I- 1 
Zr(q) = ~ - l _ ~  q (ibalo(q) ] (12) 

and 

1 1 1 
1 _2Z~F(q).[d~ASO(q_)DO(q,s)dpaSO(q~OO(q,si] Do(q,s ) t 

(13a) 

We note for clarification of notation that D(q,s) and 
Do(q,s) are abbreviations for D(q,s,Zr) and D(q,s,O), 
respectively. In the case of identical chains for which 
S°(q) = S°(q) and D°(q,s) = D°(q,s), equation (13a) reduces 
to 

D(q,s,O) = D°(q,s) (13b) 

Specific equations relating various dynamical properties 
of the measured and bare dynamic scattering functions 
can now be obtained from equation (ll) by taking 
appropriate limits with respect to q and s. 

First cumulant 
The short time behaviour of S(q,t) is obtained by taking 

the large-s limit of D(q,s). Assuming that M(q,t) is finite as 
t--~0, which is the case in flexible chains, and using 

limM(q,t) = lim sM(q,s) 

provided both limits exist, we find M(q,s)--* O, and hence 
D(q,s)--~ n(q)/q 2 according to equation (6), as s---* oo. With 
this observation equation (11) yields our first specific result 

Inserting equation (5) into equation (7), we find 

1 [ s l 
kBTz(q,s ) dpS(q) q2D(q,s) ~- 1 (8) 

where 

. . . . .  x;-(q)- x~ 
tql=~z°tq) g~(q) ( l aa )  

This relation holds both for the interacting and bare 
chains. Hence, substitution of the corresponding 
expressions for z(q,s), x°(q,s) and z°(q,s) from equation (8) 
into equation (4) with normalized structure factors, yields 

q~A~(q)[q21~q,s) + l]--qbA~--~(q)Iq2DS(q,s) t-1] 

+ ~ I q 2 O ~ ( q , s )  + l]-- 2Zr 

(9) 

1 1 I 1 1 l ( 1 4 b  ) 
no(q) 2Z~-(q) ~bAS°(q)n°(q) ÷ dpBSO(q)nO(q) 

In these equations fl(q)= n(q,zF) is the first cumulant of 
the dynamic scattering function S(q,t) in the presence of 
interactions, and n°(q) and QO(q) are the first cumulants of 
S°(q,t) and S°(q,t) of the bare chains. The Qo(q) denotes 
n(q,0). 

The first observation is that n(q) becomes negative for 
those spatial modes for which q>qc where q¢ is 
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determined by z~(qc) = ZF. This occurs when 
XF>X~(0)=X~. The threshold value ~ of the inter- 
action parameter corresponds to the spinodal point at 
a fixed volume fraction, and is given by 

c x[- 1 1 1 (15) 

Since equation (7), which was used in the derivation of 
equations (11) and (14), holds only when equilibrium 
exists, we assume in the following that ~ F < ~  and 
postpone the discussion of the physical implications of 
ZF > ~ to a later section. 

In order to discuss the experimental implications of 
equation (14), we consider the symmetrical case in which 
S°(q) = S°(q) and n°(q)= n°(q), and rewrite n(q) as 

n(q,xF) = n°(q)[ 1 - 2zFSO(q)q~A( 1 -- q~A)] 

One may use this equation in the interpretation of 
dynamic scattering experiments on melts of homopo- 
lymer mixtures in several ways, assuming that the first 
cumulant can be extracted from the measured S(q,t) by 
conventional cumulant analysis11. For instance one may 
plot n(q,ZF) for a given q as a function of ~bA(1 --~bA) to 
determine the Flory parameter XF, assuming that S ° is 
known. Since S°(q) can be written as S°(q)=NAP(qRg), 
one may use for P(x) the Debye function, assuming the 
bare chains obey Gaussian statistics. One may determine 
ZF also by plotting n(q,zF)/n°(q), this time as function of 
(qRg) 2, or even as function of S°(q) at a given volume 
ratio, provided n°(q) is known a priori. A more 
interesting representation of the data would be to plot the 
ratio 

coefficient. The Markov limit of D(q,s)is 13,14 

oo 

D:D,h - l i m l  I dtM(q,t) 
q~oq 3 

0 

where Dsh is defined by n(q)--+q2Dsh as q---*0, and referred 
to as the short-time diffusion coefficient. The D in the 
above equation is the long-time diffusion coefficient 
which is measured experimentally when qRg ~ 1. 

Using this limit in equation (11) one obtains 

= D  X~--Zr (17) D(ZF) o Z~ 

where Z~ is defined in equation (15), and 

1__=1 F 1 1 ] 
Do 2Z~L~bANAD o -~ dp.N,D o (18) 

In equation (18) D ° and D ° are the long-time diffusion 
coefficients of the bare chains. Taking the small-q limit of 
equation (14) and using n(q)---~q2Dsh one obtains the same 
equation as equation (17) for the dependence of the 
measured short-time diffusion coefficient on the 
interaction parameter ZF" But Dsh and D may be very 
different from each other. Equation (17) was written 
down and discussed before by de Gennes 5. 

Mean response time 
As another dynamical quantity that might be of interest 

in the interpretation of the dynamic experiments, we 
introduce the 'mean response time T(q)' through 

n(q,Zv) =n°(q) 
[ 1 - 2zvS ° (q)q~A (1 - ~b A)] 

as function of (qRg) 2 just to obtain the bare cumulant. 
Such a procedure will shed light onto the bare chain 
dynamics. For example, if the Rouse dynamics is assumed 
for the non-interacting chains, then 1°-12 

f dt tz(q,t) 

T(q) = i dtz(q't) 

0 

n°(q) kB T q2 
-- (16) 

NAPD(qR,) 

where ~ is the friction coefficient per statistical segment. 
Accordingly one would expect the experimental ratio to 
behave as q2kBT/~NA when qRg<l, and as 
(knT/12~aZ)(qa) 4 when qRg>> 1 and qa~ 1, where 'a' is the 
statistical step length in Gaussian chain dynamics. 
Deviations from this behaviour may provide useful 
information concerning the range of validity of the Rouse 
model for the dynamics of bare chains. 

Markov limit 
This limit corresponds to letting q and s approach zero 

while keeping q2/s fixed. Experiments in which qRg< 1 
and t---+oo such that q2t = constant can be described by the 
Markov limit of D(q,s). The constant value of q2t in these 
experiments is adjusted such that S(q,t) decays but 
remains above the noise level during the experimental 
time scale. This implies q2Dt,,, 1 where D is the diffusion 

Using equation (7) one can show that T(q) can be defined 
equivalently as the zeroth order time-moment of the 
normalized S(q,t), 15 i.e. 

oo 

0 

(19) 

This definition indicates how T(q) can be inferred, in 
principle, from the measurement of S(q,t). Combining 
equations (5) and (19) we find that T(q) is related to D(q,s) 
by T- l (q )=  q2D(q,O)" Hence equation (11) reduces in the 
limit of s---*0, to 

To,  (q)Z~(q) - ZF T-  ' (q,Zv) = (20) 

with 

T , ' ' -  1 f T°(q) . T°(q) "~ (21) 
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The bare mean response times T ° and T ° appearing in 
equation (21) are defined by 

at) 

o 1 T~ ( q ) = ~ |  dt S°(q,t) 

o 

The expressions of the measured f~(q,xF), D(ZF) and 
T(q,XF) in terms of the interaction parameter and their 
bare equivalents, have the same form because they are 
obtained from the same starting equation (11). Since they 
represent different aspects of the measured S(q,t), they can 
be used individually or jointly in the same experiment for 
the interpretation of dynamic scattering on melts of 
homopolymer mixtures. In some special cases they are 
related to each other in a simple way. For example, in q- 
regions where S(q,t) can be scaled as S(q,t)= S(q)f[t~(q)t] 
where flz) is a known shape function, one finds 

oO 

T(q) = dzflz) (22) 

o 

In such cases, the results of the cumulant analysis yielding 
fl(q), and the zeroth-order time moment of the 
normalized S(q,t) yielding T(q) can be compared for 
consistency of the data analysis provided the shape 
function is known a priori. 

STABILITY CONSIDERATIONS 

The homogeneous state of the mixture becomes unstable 
when ZF>X~, and the system tends to a new overall 
heterogeneous equilibrium state although locally the 
system may be stable since ZF < z~(q) for q > qc. In this case 
the response function x(q,s) of the interacting mixture can 
not be expressed in terms of S(q,t) which is an equilibrium 
time correlation function. However, the mean response 
6dpA(q,t) of the interacting system to a time-dependent 
external potential UA(q,t) can still be expressed as 

6dpA (q,s) = -- z(q,s,ZF)U A (q,s) (23) 

within the framework of the mean field theory. The 
expression of z(q,S,ZF) in equation (4) can be written as 

go(q,s) 
g(q's) =-1 -- 2kBTZFZo(q,s) (24) 

where Xo(q,s) is defined by 

i 1 1 
- -  ~ ( 2 5 )  

z0(q,s) z°(q,s) z°(q,s) 

Equation (24) suggests an interpretation of the interacting 
system as a closed-loop feedback network (el. Figure 1) 
with Zo(q,s) and 2ZFkBT being the forward and feedback 
transfer functions. The stability of the system is 
determined by the algebraically largest root of the 
characteristic equation 

1 = 2kB TgFZo(q,s) (26) 

The roots are real because the dynamics of the 
interacting system are governed by diffusion, and are 
overdamped. Each discrete root of this equation 
corresponds to an exponential term in the mean response 
6rkA(q,t). It is of course possible that Zo(q,s) may contain 

--UA (q, S ) ~ ) - " " ~ ' ~  = XO (q, S) ] .~ 5~bA (q, S) 

Figure t Interpretation of RPA as a feedback network for stability 
analysis 

branch-cuts in the complex s-plane, so that 6dpA(q,t) 
cannot be expressed as sum of exponentials. However, we 
shall not be concerned with this question, and assume 
that there is a discrete root s = ~(q,Xv) that changes sign 
when XF is increased. The threshold of instability is 
determined by ~(q,gF)= 0, i.e. 

1 = 2kBTZvZo(q,O) 

This equation yields either the critical value g~(q) of the 
interaction parameter ZF as function of q (see equation 
(12)), or qc as function of ZF, such that the asymptotic 
growth rate of 6$A(q,t) is negative for q > qc and positive 
for q < q¢. This equation is of course identical to XF = ~r(q) 
where x~(q) was introduced in equation (12). 

The bare response functions in equation (25) can still be 
expressed in terms of their corresponding equilibrium 
time correlation functions (cf. equations (7) and (8)). 
Hence, using equation (8) in equations (25) and (26) one 
can rewrite the characteristic equation as 

2~ , ,ZF--z~(q) 
~(q,zv)=q Uotq,a) (27) 

where Do(q,a ) was defined in equation (13). Several 
conclusions can be drawn from this form of the 
characteristic equation: In the case of ZF<Z~: where the 
homogeneous state is an equilibrium state, the right hand 
side of equation (27) can be identified as the generalized 
diffusion coefficient --q2D(q,a,XF) of the interacting 
system (cf. equation (11)). Then, equation (27) becomes 

+ q2D(q,~,ZF ) = 0, which is the denominator in equation 
(5). One concludes that the relaxation spectra of S(q,t,XF) 
and the mean response 6~A(q,t) are the same. This result is 
also a consequence of a more general property that S(q,t) 
satisfies the linearized macroscopic equations for the 
mean response. More specific conclusions are: (1) Since 
g ~ ( q - - . o o ) = o o ,  ot----~--q2DM in the large q-limit with 
Do(o%a)=D M, implying relaxation through segmental 
diffusion. Here D~ 1 is a weighted combination of the 
inverse segmental diffusion coefficients of the bare chains 
(cf. equation (18)). (2) Since a---*0 as q2---~0, the growth rate 
of the long wavelength spatial modes is given by the 
Markov limit of equation (27): 

~---*q2Do(Z-~FC--\ZF 1) (28) 

where D O is a combination of the long-time diffusion 
coefficients of the bare chains (cf. equation (18)). (3) The 
growth rates of the spatial modes with q~ q¢ follows from 
q2Do(q,O)= Tol(q) as 

=--~To-'(-) ZF-Z~(q) (29) q z~(q) 
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where To(q) is a weighted average of the bare mean 
response times (cf. equation (21)). Equation (29) reduces 
to equation (28) when q¢---*0. (4) When ZF is very large, 
equation (27) yields, with q2Do(q,ct----~ov)= Qo(q), 

~--~flo(q) ~F-Z~(q) (30) 
z~(q) 

where flo(q) :'s defined by equation (14b). 
Figure 2 shows the q-regions for the stable and unstable 

modes, as well as the qualitative behaviour of the growth 
rate as function of q, when XF ~ X~" The latter implies that 
both the cut-off q¢ and the growth rate are small so that 
a"~q2Do[ZF--ZcF(q)]/ZeF(q). For simplicity we consider 
the case of identical chains where z~(q)= X~F/PD(X) with 
PD(K) being the Debye function and r = (qRg) 2. The solid 
curve is plotted using ~(~/J(F = 2/3 in 

a(q,zv)~_qZ Do( Po(tC)~ff~ - 1) (31) 

The behaviour of Ct(K,ZF) can be explained analytically by 
approximating PD(X) as 1 -  x/3. Then the cut-off wave 
number qc is given by 

q2R2= 311 _Z~]ZFd 

and ct(x,Zr) becomes a parabola for q<~q~ with a 
maximum growth rate 

1~ z [XF 1-] 
O~max = : / 3 0 q m a x L ~ F -  F - -  ] 

where qmax=qff21/2 is the mode with the maximum 
growth rate. 

Figure 2 also shows ~t(q---*~,ZF)= --q2DM where DM is 
the diffusion coefficient of a statistical segment in a bare 
chain. This limit is of course outside the validity of the 
above approximation, because Do(q,s) cannot be 
approximated by its Markov limit for large q. 

The kinetics of spinodal decomposition were recently 
studied by Pincus ~6 and Binder ~ 7 using a thermodynamic 
approach. 

XC/XF > 1 • 

O.S xC/xF = 1 

= Stable modes 
~ q c  XFC/XF < 1 

o.o " ' %  X.. .  T . 
~ Unstable modes ... ~ I O - - D e b y e ~  ¢~ 

..~" --0.5 - q2 D {  - - ~ . . . . , ~  
I i I i i 0 . 0  

0 0.5 1.0 2 3 
K = ( q R  G )2 

Figure 2 Qualitative behaviour of the growth rate of the mean 
response, and the stability regions of the spatial modes for 
homopolymer mixtures in melt 

C O P O L Y M E R  MELTS 

General results 
The static structure factor Saa(q)= SBB(q)= --SAB(q) of 

melts ofcopolymers consisting of two species A and B was 
calculated previously4: 

1 o 0 1/2 0 qSASA + ¢BS. + 2(~bACB) SAB 
¢ ¢Bs  - A 4) (S A.) (~ASAA 0 0 0 2 2ZF (32) 

where S°(q) are the bare structure factors with the 
normalization S°(0) = (NiN31/2 where Ni and N i are the 
number of monomers of the ith and jth sections of a 
given copolymer. The prescription described in the 
introduction yields the dynamic response function 
z(q,S,ZF) of the interacting copolymers as 

1 z°(q,s) 
z(q,s) z°(q,s)z°(q,s)-[z%(q,s)] 2 2zFk"T (33) 

where Z ° = Z ° + Z ° + 2zOB. This equation can be written in 
a compact form in matrix notation: 

Z- '(q,s)= mT[~=O(q,s)] - 'm_ - 2ZFkBT (34) 

where _re=col[I , -1] ,  m T is its transpose, and X=°(q,s) is 

Z°(q,s) -[Z° Z°al (35) 
= - L x O , ,  z ° ] 

The case of copolymer melts differs from that of melts of 
mixtures because of the presence of the off-diagonal terms 
Z°B(q,s). These terms account for the dynamic coupling 
between the two parts of the copolymers. The dynamic 
quantities of the interacting system can be related to those 
of the bare chains in a similar way as in mixtures by using 
matrix notation only with minor changes. These 
modifications are pointed out in the following. 

Equation (5), for the bare dynamic scattering function, 
becomes 

=S°(q,s) = [sI + q2_D_°(q,s)] - 1S°(q) (36) 

where the static structure matrix S o has matrix elements 
CAS °, ~bBS ° and (¢A~a)I/2sOB. The generalized diffusion 
matrix _D_°(q,s) is related to the first cumulant matrix QO(q) 
and the memory matrix =M°(q,s) by q2__D° = Q o _  __M o (cf. 
equation (6)). Using the extension of equation (7) to 
matrices, we find 

kBTz= ° = q2_D_°[s_I + q2=D°] - 1SO (37) 

Since z(q,s) is a scalar, we still use equations (5) and (8) to 
introduce D(q~s). The procedure leading to equation (11) 
yields, in this case 

where 

D(q,s) = Do(q,s) Z~(q) Xv 
Z~v(q) (38) 

1 1 
=2zC'q 'F~) mT[-D-°(q's)-S°(q)]-'-m (39) Do(q,s) 

~(q)  = ½_mT[.=S°(q)] - X_m (40) 
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The characteristic equation describing the stability of the 
interacting system is obtained from equation (26) by 
using Zo~(q,s)=m_T~°(q,s)]-im_, and the growth rate 
is found as 

' some interesting qualitative features of the dynamics of 
copolymer melts. 

Firstly, it shows that the small-q limit of f~(q,zF) does 
not vanish. Using P1/2 - Pr ~ (qR, r)2/6 as q ~ 0, we find 

2 ZF - -  z~(q) 
a(q,ZF) = q Do(q,a) (41) 

3kaT 
f~ (q,zF) ~ N,/2 ~J~T (48) 

These equations are. identical in form to their 
counterparts in the case of mixtures. The difference 
between them lies in th~ definitions of Do(q,s ) and z~(q)- 
Various q and s limits of equations (38) and (41) can be 
investigated in a similar manner. Here we discuss the 
short time and Markov limits to draw some physical 
conclusions relevant to dynamic scattering experiments 
on copolymer melts. The mean response time is left out 
because its discussion does not add anything new. 

First cumulant 
The large-s limit of equations (38) and (39) defines the 

first cumulants: 

fl(q) f~ ( )Z~'(q)-ZF 
= o q  (42) 

with 

1 1 
= 2z~(q)mT[~=°(q)._S°(q)]__ - tin_ (43) 

f~0(q) 

In order to proceed further we must specify the static 
structure matrix__S°(q) and the first cumulant matrix ~0(q) 
for the bare chains. For simplicity we consider symmetri- 
cal copolymers for which ~bA=~ba=l/2, NA=NB=Nt/2,  
S°(q) = S°(q) = N1/2P1/2 and S%(q) = N1/2[2PT(q) -- 
Pu2(q)] where Pu2(q) and Pr(q) are taken to be the 
Debye functions for the half and full chains respectively. 
Substitution of these into equation (40) yields 

where RsT is the radius of gyration of the full chain. This 
result is interesting because f~(q,ZF) vanishes as q2 in the 
case of mixtures (cf. equation (16) and the subsequent 
discussion) implying the translational diffusion of the 
entire molecule during the initial relaxation of long-wave 
spatial inhomogeneities. In the case of copolymer melts 
the maximum spatial inhomogeneity is of the order of 
RgT/2 and hence the initial relaxation of long-wave 
density inhomogeneities is due to local motions, and 
independent of q whenever qRgT ~ 1. 

Secondly, equation (47) yields, in the large-q limit 
where qRgT~ 1, 

3kaT (qRgT)* (49) 
f~(q,XF) = NI/2~Rg2 12 

which is the usual q*-behaviour of the internal motions in 
the Rouse dynamics. In the still higher q-regions where 
qa>~ 1, f~(q,ZF)---,q2(kBT/¢), which corresponds to the 
segmental diffusion. However, this limit cannot be 
obtained from equation (43) when S(q) is approximated 
by the Debye function, as is the case in equation (47). 

Finally, equation (47) predicts that Q(q,ZF) can become 
negative for a range of q-values when the interaction 
parameter exceeds a threshold value Z~ given by 

Z~ = N ~/~[ Pt/2(qc)- PT(qc)] - '  (5o) 

where qc maximizes Pl/2(q)- PT(q). Numerically, 
(qcRgT)2 ----- 3.7934 and P1/2(qc)--PT(qc)~--O.19057. When 
ZF>Z~ there are two roots qc, and qc2 of 

):e(q) = 1/N u2(Pu2 - PT) (44) Z~ = ZFt/(q) (51) 

The product ~=°(q)_S°(q) in equation (43) can be expressed, 
in the framework of the linear response theory, as 

~=°(q)=_S°(q) = (6q~ Lf'°fi~b T> (45) 

where 3~b =COI]-3~bA,~bB] and LP ° is a time-independent 
operator that describes the dynamics of the bare 
chainslOa 1. The 3ckj(q) are the fluctuations in the volume 
fractions of thejth type of monomers. If the Rouse model 
is adopted to describe the dynamics of the bare chains, 
one finds from equation (45) 

,-o, , 2kBTI-~bA 0 7 _no' 
J (46) 

Substitution of equations (44) and (46) into equation (42) 
yields 

kaT 1--ZFNI/2(P1/2--PT) 
~"~(q,ZF) q22N1/2 ~ P1/2 - PT 

(47) 

Although perhaps too simplistic, this expression displays 

where 

Pt/2 (q) - PT(q) 
n ( q )  - P , /2 (qc )  - eT(qc) 

(52) 

The spatial modes in the range qcl ~< q~< qc2 are unstable 
when XF>X~. It is interesting that the mode 
corresponding to qRgr~2 (more precisely, 1.9476) 
becomes unstable first when the spinodal point XF =Z~ is 
reached, in contrast with the melt of mixture of 
homopolymers where the mode q = 0 becomes unstable 
first. This behaviour may also be attributed to the fact 
that the spatial inhomogeneities in copolymer melts are 
local involving distances of the order of Rgr/2. 

In Figure 3 we have plotted the normalized first 
cumulant 

(kBTz~/2~R2T) =x  1 ZF 

as function of tc=q2R~T and for ZF/Z~=0, 0.65 and 1.0. 
The predicted approach of ~')(q,ZF) to a constant in the 
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F i g u r e  3 Expected behaviour of the first cumulant in copolymer melts 
as function of the interaction parameter ZF, and qRg T 
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small-q limit may not be observed experimentally. One 
reason is that the intensity of the scattered beam decreases 
because S(q,t) vanishes as q is decreased. The second 
reason is that the conditions of a dynamic scattering 
experiment correspond to the Markov limit when 
qRgT ~ 1, and hence the cumulant analysis yields the long- 
time diffusion coefficient rather than the first cumulant. 
Therefore, one would more likely expect a bending 
towards the origin, even if it were feasible to extend the 
experimental q-range to qRgT~ 1. The most suitable q- 
region in an experiment to observe the behaviour 
depicted in the Figure is around qRgT~ 2 where the 
cumulant analysis yields the first cumulant, and where 
Q(q,XF) is expected to attain its minimum in the case of 
incompatible species. This region is also favourable from 
the point of view of signal intensity. 

Markov limit 
Since it corresponds to the long-time diffusion of the 

bare copolymers, the matrix _D_°(q,s) in equation (39) is 
diagonal in the Markov limit. The diagonal elements 
representing the long-time diffusion coefficients of the 
two-parts of a copolymer molecule are equal to each 
other, and to the diffusion coefficient of the entire 
molecule. The off-diagonal terms are zero because the two 
parts of a copolymer diffuse together, and the relative 
distance between their centre of masses remains finite as 
t - * ~ .  From equations (38) and (39) we find D(ZF) ----- D, i.e. 
the long-time diffusion coefficient is not affected by the 
interaction between the two arms of the copolymer. 

Growth rates 
The discussion of the growth rate 0~(q,~(F ) of the mean 

response, given by the characteristic equation differs from 
the investigation of the various q and s limits of D(q,s,ZF) 
using equation (38), because q and s are independent 
variables in the latter, whereas equation (41) determines 
~t(q,zF) for each q. Since the long time behaviour of the 
mean response is governed by the algebraically largest 
root of the characteristic equation, we look for roots near 
zero. For small-q, there is a root that vanishes with q2. It 

is obtained by taking the Markov limit of equation (41) as 
a = - q2D where D is the long-time diffusion coefficient of 
a copolymer. It is independent of ZF because x~(q) diverges 
as q---*0. For XF > X~, equation (41) has positive roots for 
modes qct < q < qc2 (see Figure 4). Around the instability 
threshold where ZF ~" g~, these roots can be approximated 
by 

a(q,zv)=T-'(q)~F--z~(q) 
x~(q) 

where T(q)=[q2Do(q,O)] -1 and denotes the mean 
response time of the noninteracting chains. In the large-q 
limit, a = -qZD M corresponding to segmental diffusion. 

Figure 4 depicts the qualitative behaviour of a(q,zv) as 
a function of x=q2R2 T. The solid curve is plotted in the 
symmetrical case using 

o~(q'zF)=(ZFD°/z~R2T)t¢[ rl(r)-Z~v ] 

with X~/ZF=0"8" In this expression Do(q,~) is 
approximated by the constant D O for all values of q. 
Without explicit knowledge of bare chain dynamics to 
calculate Do(q,s) it is not possible to investigate the 
variation of ~(q,XF) more precisely. 

SUMMARY AND DISCUSSIONS 

The main point in this paper was the derivation of an 
equation for the generalized diffusion coefficient D(q,s) of 
the interacting polymers in melt, in terms of D°(q,s) of the 
bare chains, starting from the expression of the dynamic 
response function obtained in RPA. Taking proper limits 
of D(q,s) as function of q and s in this equation, specific 
relationships were obtained between various dynamic 
quantities of the interacting and bare systems. In 
particular the first cumulant f~(q,xF), mean response time 
T(q,zv) and the long-time diffusion coefficient D(Xv) are 
studied since they can be inferred from the measured 
S(q,t) by the conventional data analysis. The expressions 
of these quantities in terms of their bare counterparts are 
not based on any particular model for the dynamics of the 
bare chains, so that they can be used to extract 

xC/xF = 1 
1.0 | ~ * ~ , J ~ = ' ~ _  tot(q, XF ) 

~ t a b l e / ~  f "  I " ~  XCF/X, =0.8 
/ o.0. 
--  I :~d~fl. " Unstable modes - [ ~ ,  ~'-  Stable- 

,o I,,cl q c 2 \ ' 7 . - .  

0 

1.0 

0.5 
v 

qc (Kc ----3.793) --q2DM 
! 

= ~ ~ lr  ] I I I 1 I I I I 0 . 0  
5 10 

K = (qRGT) 
Qualitative behaviour of the growth rate of the mean F i g u r e  4 

response, and the stability regions of the spatial modes for copolymer 
melts 
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information to test the validity of the different models. We 
have occasionally used the Rouse dynamics for bare 
chains to illustrate the application of the general results, 
and to explore the expected qualitative behaviour of the 
above dynamical quantities as function of wave number q 
and the interaction parameter ZF, in the cases of melts of a 
mixture of two homopolymers and copolymer melts. The 
physical content of our results in the former case is 
essentially the same as those discussed by Brochard and 
de Gennes 2 when homopolymers are compatible. In the 
case of copolymer melts, new and somewhat interesting 
qualitative results are obtained concerning the q- 
dependence of the first cumulant of S(q,t) and the growth 
rate ¢(q,ZF) of the mean response (cf. Figures 3 and 4), 
specially in the case of incompatible species. We think it 
would be interesting to test these qualitative preidctions 
experimentally. The threshold of instability of the 
dynamic properties as function of q and the interaction 
parameter is the same for all of them, and determined by 
the behaviour of the static structure factor 
S(q,ZF)C~A =(1/2  )[ZeF(q)-- ZF] -1. Thermodynamics enters 
in the description of the interacting system only throughxF 
parameter. 

We would like to emphasize that our specific results 
based on the Rouse dynamics, and the qualitative curves 
presented in the Figures are only meant to be a guide to 
experimental studies. Our main purpose in this work was 
to explore the implications of RPA in the dynamics of 
polymer blends systematically, using the formalism of the 
linear response theory without trying to assess its validity. 
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